Differential expression of miRNAs in response to salt stress in maize roots.

نویسندگان

  • Dong Ding
  • Lifang Zhang
  • Hang Wang
  • Zhijie Liu
  • Zuxin Zhang
  • Yonglian Zheng
چکیده

BACKGROUND AND AIMS Corn (Zea mays) responds to salt stress via changes in gene expression, metabolism and physiology. This adaptation is achieved through the regulation of gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) have been found to act as key regulating factors of post-transcriptional gene expression. However, little is known about the role of miRNAs in plants' responses to abiotic stresses. METHODS A custom microparaflo microfluidic array containing release version 10.1 plant miRNA probes (http://microrna.sanger.ac.uk/) was used to discover salt stress-responsive miRNAs using the differences in miRNA expression between the salt-tolerant maize inbred line 'NC286' and the salt-sensitive maize line 'Huangzao4'. Key Results miRNA microarray hybridization revealed that a total of 98 miRNAs, from 27 plant miRNA families, had significantly altered expression after salt treatment. These miRNAs displayed different activities in the salt response, and miRNAs belonging to the same miRNA family showed the same behaviour. Interestingly, 18 miRNAs were found which were only expressed in the salt-tolerant maize line, and 25 miRNAs that showed a delayed regulation pattern in the salt-sensitive line. A gene model was proposed that showed how miRNAs could regulate the abiotic stress-associated process and the gene networks coping with the stress. CONCLUSIONS Salt-responsive miRNAs are involved in the regulation of metabolic, morphological and physiological adaptations of maize seedlings at the post-transcriptional level. The miRNA genotype-specific expression model might explain the distinct salt sensitivities between maize lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Salt Tolerance-related microRNAs and Their Targets in Maize (Zea mays L.) Using High-throughput Sequencing and Degradome Analysis

To identify the known and novel microRNAs (miRNAs) and their targets that are involved in the response and adaptation of maize (Zea mays) to salt stress, miRNAs and their targets were identified by a combined analysis of the deep sequencing of small RNAs (sRNA) and degradome libraries. The identities were confirmed by a quantitative expression analysis with over 100 million raw reads of sRNA an...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Expression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.

Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. Th...

متن کامل

Expression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR

The expression pattern of TomPRO2 and LaPA1 genes in two tomato (Lycopersicon esculentum) cultivars named as Isfahani and Shirazi under in vitro salt stress were investigated. Four to six weeks old in vitro grown seedlings were transferred on MS medium containing 0, 80 and 160 mM NaCl and untreated plants were used as control. RNA was extracted from root and leaf and then cDNA was synthesized. ...

متن کامل

Conserved miRNAs and Their Response to Salt Stress in Wild Eggplant Solanum linnaeanum Roots

The Solanaceae family includes some important vegetable crops, and they often suffer from salinity stress. Some miRNAs have been identified to regulate gene expression in plant response to salt stress; however, little is known about the involvement of miRNAs in Solanaceae species. To identify salt-responsive miRNAs, high-throughput sequencing was used to sequence libraries constructed from root...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2009